
Status and going forward

Matan Barak

RDMA UserKernel kABI

Session Goals

• Making the new kABI enabled by default

• Pending Tasks

• Community Effort

Linux Plumbers 2017 2

Introducing the kABI core concepts VERY briefly here, for more information:

patches, presentation, me 

kABI Goals

• Resolving write() security issue

• Introducing a well defined extensible approach
– Existing methods (“verbs”) are easily extensible

– Drivers could add their special sauce
• New objects, methods and attributes

• Mix driver specific methods and attributes for existing objects and methods.

• Future syntactic based capability system
– Grouping all aspects of a feature together

• Ease the burden of writing a new verb and decrease the
chances of bugs
– Automatic syntactic checks

• Backward compatibility
– Change only libibverbs commands layer

• Efficient
– Perfect hash dispatching

Linux Plumbers 2017 3

OOP based approach

Object 1 (QP)

Method 1
(CREATE_QP)

Attr 1
(QP_HANDLE)

Attr 2
(QP_TYPE)

Method 2
(MODIFY_QP)

Attr 1
(QP_HANDLE)

Attr 2 (AV)

Object 2 (CQ)

Method 1
(CREATE_CQ)

Attr 1
(CQ_HANDLE)

Attr 2 (CQE)

Linux Plumbers 2017 4

Parsing Trees

• A parsing tree contains a set of objects (defined in previous slide).

• Each feature-set is represented by a parsing tree

– A feature-set may contain a single feature

• The common feature-set is represented by feature a parsing tree too.

• Objects and methods could exist in few parsing trees

– Semantically wise, all these objects are conceptually merged

• Driver specific feature-sets are represented by parsing trees.

Linux Plumbers 2017 5

QP CQ

MRMW

PD

DEVICE

CQ

MLX_NEW_OBJ

CQ QP

Common Feature-set Specific Feature Driver-specific Feature

Feature Hierarchy and Merge

• Each feature is represented by a “parsing tree”.

Linux Plumbers 2017 6

Timestamp feature

OBJECT_CQ

METHOD_CQ_CREATE

ATTR_CQ_ENABLE_TS

OBJECT_DEVICE

METHOD_DEVICE_QUERY

ATTR_TIMESTAMP_MASK

• Driver indicates which features are supported and merge them

Common verbs
features

CQ timestamp
feature

Consolidated
driver specific
parsing tree

Contains only features

supported by the device

and driver. In the future,

this could be queried by

the user-space!Driver specific
features

Zero conflicts in merge

• Every object, method and attribute is given an ID.

– ID is 16bit, existing for all entities (objects, methods and attributes).

– IDs are unique in their containing object (i.e. methods in OBJECT_CQ can’t

collide, but CREATE_CQ and CREATE_QP can have the same ID).

• User-space request is given in a ID-Length-Pointer format. The

request is parsed according to these IDs.

Linux Plumbers 2017 7

ID in namespaceNamespace:

0 : Common

1 : Driver Specific

2 – 15 : Reserved

Domain Specific Language -

Object structure

• Parsing-tree is a set of objects:

• Objects have c’tor, d’tor and other methods

Linux Plumbers 2017 8

DECLARE_UVERBS_OBJECT(uverbs_object_cq /* Name */,
UVERBS_OBJECT_CQ /* ID */,
&UVERBS_TYPE_ALLOC_IDR_SZ(sizeof(struct ib_ucq_object), 0,

uverbs_free_cq) /* Type info */,
&uverbs_method_cq_create /* method 1 */,
&uverbs_method_cq_destroy /* method 2 */);

DECLARE_UVERBS_OBJECT_TREE(uverbs_default_objects /* Name */,
&uverbs_object_device /* Object 1*/,
&uverbs_object_pd /* Object 2 */,
&uverbs_object_comp_channel /* Object 3 */,
&uverbs_object_cq /* Object 4 */,
&uverbs_object_qp /* Object 5 */);

Domain specific language –

Methods and Attributes

• Methods contain a list of attributes

Linux Plumbers 2017 9

static DECLARE_UVERBS_METHOD(
uverbs_method_cq_create /* Name */,
UVERBS_CQ_CREATE /* ID */,
uverbs_create_cq_handler /* handler */,
&UVERBS_ATTR_IDR(CREATE_CQ_HANDLE, UVERBS_OBJECT_CQ, UVERBS_ACCESS_NEW,

UA_FLAGS(UVERBS_ATTR_SPEC_F_MANDATORY)),
&UVERBS_ATTR_PTR_IN(CREATE_CQ_CQE, u32,

UA_FLAGS(UVERBS_ATTR_SPEC_F_MANDATORY)),
&UVERBS_ATTR_FD(CREATE_CQ_COMP_CHANNEL, UVERBS_OBJECT_COMP_CHANNEL,

UVERBS_ACCESS_READ),
&UVERBS_ATTR_PTR_OUT(CREATE_CQ_RESP_CQE, u32,

UA_FLAGS(UVERBS_ATTR_SPEC_F_MANDATORY)),
…
&uverbs_uhw_compat_in, &uverbs_uhw_compat_out);

Framework provides:

• Creating, locking, destroying and mapping IDR/FDs based uobjects

• Automatic size validation for PTR_IN/PTR_OUT

• Automatic validation of mandatory attributes (fail if not exists)

IDR object, created
automatically

Driver
specific
legacy
attrs

Verbs handler interface

• Gets “uverbs_attr_bundle” sturct.

• Attributes could be extracted by:

– uverbs_attr_get(attrs_bundle,
CREATE_CQ_COMP_CHANNEL);

– uverbs_copy_from(&dest, attrs_bundle,
CREATE_CQ_COMP_VECTOR);

– uverbs_copy_to(attrs_bundle,
CREATE_CQ_RESP_CQE,
&source);

Linux Plumbers 2017 10

static int uverbs_create_cq_handler(struct ib_device *ib_dev,
struct ib_uverbs_file *file,
struct uverbs_attr_bundle *attrs)

Going forward

• Try the patches and report bugs!

• Gradually start implementing all existing verbs

using the new infrastructure. Discuss every verb.

• New driver specific attributes could be passed

using the new infrastructure (instead of the

legacy ib_udata blob).

– Replace ib_udata with attribute bundle in all drivers.

• Implement a new query system based on the

new driver specific parsing tree.

Linux Plumbers 2017 11

Discussion Topics

• Implementing user-space API
– Mix common and driver-specific features

– Standard ibv types vs driver-specific types

– Granular API
• E.g., driver_modify_rc_qp_init_rtr

• Minimal set to enable by default
– Enough to test traffic

– E.g., ibv_rc_pingpong

• ABI granularity
– Do we break up existing calls in kernel?

– E.g., modify_rc_qp_init_rtr

• New query system
– Reading the parse-tree

– Query semantics

• RDMA-CM
– Using the same infrastructure

Linux Plumbers 2017 12

Linux Plumbers 2017

Thank You

